Altered white matter microstructure in lupus patients: a diffusion tensor imaging study


Nystedt J, Nilsson M, Jönsen A, Nilsson P, Bengtsson A, Lilja Å, Lätt J, Mannfolk P, Sundgren PC. Altered white matter microstructure in lupus patients: a diffusion tensor imaging study. Arthritis Res Ther. 2018;20 (1) :21.

Date Published:

2018 Feb 07


BACKGROUND: The purpose of this study was to investigate whether white matter microstructure is altered in patients suffering from systemic lupus erythematosus (SLE), and if so, whether such alterations differed between patients with and without neuropsychiatric symptoms. METHODS: Structural MRI and diffusion tensor imaging (DTI) were performed in 64 female SLE patients (mean age 36.9 years, range 18.2-52.2 years) and 21 healthy controls (mean age 36.7 years, range 23.3-51.2 years) in conjunction with clinical examination, laboratory tests, cognitive evaluation, and self-assessment questionnaires. The patients were subgrouped according to the American College of Rheumatology Neuropsychiatric Systemic Lupus Erythematosus case definitions into non-neuropsychiatric SLE (nonNPSLE) and neuropsychiatric SLE (NPSLE). RESULTS: Comparisons between the SLE group and healthy controls showed that the mean fractional anisotropy (FA) was significantly reduced in the right rostral cingulum (p = 0.038), the mid-sagittal corpus callosum (CC) (p = 0.050), and the forceps minor of the CC (p = 0.015). The mean diffusivity (MD) was significantly increased in the left hippocampal cingulum (p = 0.017). No significant differences in MD or FA values were identified between NPSLE and nonNPSLE patients. Disease duration among all SLE patients correlated significantly with reduced FA in the CC (p < 0.05). No correlations were found between DTI parameters and white matter hyperintensities, SLE Disease Activity Index-2000, Systemic Lupus International Collaborating Clinical/ACR Organ Damage Index, or Montgomery Asberg Depression Rate Score Self-report. CONCLUSIONS: We found alterations of white matter microstructure in SLE patients that were related to disease duration and fatigue. Our results indicate that cerebral involvement in SLE is not isolated to the NPSLE subgroup.