NOVIFAST: A Fast Algorithm for Accurate and Precise VFA MRI Mapping

Citation:

Ramos-Llorden G, Vegas-Sanchez-Ferrero G, Bjork M, Vanhevel F, Parizel PM, Estepar RSJ, den Dekker AJ, Sijbers J. NOVIFAST: A Fast Algorithm for Accurate and Precise VFA MRI Mapping. IEEE Trans Med Imaging. 2018;37 (11) :2414-2427.

Date Published:

2018 Nov

Abstract:

In quantitative magnetic resonance mapping, the variable flip angle (VFA) steady state spoiled gradient recalled echo (SPGR) imaging technique is popular as it provides a series of high resolution weighted images in a clinically feasible time. Fast, linear methods that estimate maps from these weighted images have been proposed, such as DESPOT1 and iterative re-weighted linear least squares. More accurate, non-linear least squares (NLLS) estimators are in play, but these are generally much slower and require careful initialization. In this paper, we present NOVIFAST, a novel NLLS-based algorithm specifically tailored to VFA SPGR mapping. By exploiting the particular structure of the SPGR model, a computationally efficient, yet accurate and precise map estimator is derived. Simulation and in vivo human brain experiments demonstrate a twenty-fold speed gain of NOVIFAST compared with conventional gradient-based NLLS estimators while maintaining a high precision and accuracy. Moreover, NOVIFAST is eight times faster than the efficient implementations of the variable projection (VARPRO) method. Furthermore, NOVIFAST is shown to be robust against initialization.