Publications

2019
Lyall AE, Rathi Y, Kubicki M, Shenton ME. Diffusion Magnetic Resonance Imaging Advances the Study of Nuclei-Specific Thalamocortical Connectivity in Early Stage Psychosis. Biol Psychiatry. 2019;85 (1) :10-12.
Topgaard D. Diffusion tensor distribution imaging. NMR Biomed. 2019 :e4066.Abstract
Conventional diffusion MRI yields voxel-averaged parameters that suffer from ambiguities for heterogeneous anisotropic materials such as brain tissue. Using principles from solid-state NMR spectroscopy, we have previously introduced the shape of the diffusion encoding tensor as a separate acquisition dimension that disentangles isotropic and anisotropic contributions to the observed diffusivities, thereby allowing for unconstrained data inversion into diffusion tensor distributions with "size," "shape," and orientation dimensions. Here we combine our recent non-parametric data inversion algorithm and data acquisition protocol with an imaging pulse sequence to demonstrate spatial mapping of diffusion tensor distributions using a previously developed composite phantom with multiple isotropic and anisotropic components. We propose a compact format for visualizing two-dimensional arrays of the distributions, new scalar parameters quantifying intra-voxel heterogeneity, and a binning procedure giving maps of all relevant parameters for each of the components resolved in the multidimensional distribution space.
Jimenez-Carretero D, Bermejo-Peláez D, Nardelli P, Fraga P, Fraile E, San José Estépar R, Ledesma-Carbayo MJ. A graph-cut approach for pulmonary artery-vein segmentation in noncontrast CT images. Med Image Anal. 2019;52 :144-159.Abstract
Lung vessel segmentation has been widely explored by the biomedical image processing community; however, the differentiation of arterial from venous irrigation is still a challenge. Pulmonary artery-vein (AV) segmentation using computed tomography (CT) is growing in importance owing to its undeniable utility in multiple cardiopulmonary pathological states, especially those implying vascular remodelling, allowing the study of both flow systems separately. We present a new framework to approach the separation of tree-like structures using local information and a specifically designed graph-cut methodology that ensures connectivity as well as the spatial and directional consistency of the derived subtrees. This framework has been applied to the pulmonary AV classification using a random forest (RF) pre-classifier to exploit the local anatomical differences of arteries and veins. The evaluation of the system was performed using 192 bronchopulmonary segment phantoms, 48 anthropomorphic pulmonary CT phantoms, and 26 lungs from noncontrast CT images with precise voxel-based reference standards obtained by manually labelling the vessel trees. The experiments reveal a relevant improvement in the accuracy ( ∼ 20%) of the vessel particle classification with the proposed framework with respect to using only the pre-classification based on local information applied to the whole area of the lung under study. The results demonstrated the accurate differentiation between arteries and veins in both clinical and synthetic cases, specifically when the image quality can guarantee a good airway segmentation, which opens a huge range of possibilities in the clinical study of cardiopulmonary diseases.
Li F, Bian H, Wang W, Ning L, Xu M, Sun S, Ren W, Qin C, Qi J. HBV infection suppresses the expression of inflammatory macrophage miR‑210. Mol Med Rep. 2019;19 (3) :1833-1839.Abstract
It has been previously reported that hepatitis B e‑antigen (HBeAg) induces microRNA (miR)‑155 expression and promotes liver injury by increasing inflammatory cytokine production in macrophages. Moreover, it was previously demonstrated that miR‑210 alleviates lipopolysaccharide‑stimulated proinflammatory cytokine production in macrophages. In addition, accumulating evidence suggests that miR‑210 is able to suppress hepatitis B virus (HBV) replication in HepG2.2.15 cells. However, it remains unclear whether miR‑210, similar to miR‑155, affects the progress of hepatitis B by regulating macrophage function. Reverse transcription‑quantitative polymerase chain reaction analysis was used to detect miR‑210 levels in serum and cells. HBV‑associated antigens stimulated different types of macrophages and facilitated the observation of the effects of these antigens on miR‑210 expression in macrophages. Co‑culture of peripheral blood monocytes from healthy controls and the serum of patients with chronic hepatitis B (CHB) was conducted to evaluate the effect of HBV‑associated elements in the serum on the expression of the macrophage miR‑210 in vivo. It was observed that miR‑210 expression levels were decreased in the peripheral blood monocytes (PBMs) and serum of patients with CHB and negatively associated with serum alanine aminotransferase and aspartate aminotransferase, but not other clinical parameters including hepatitis B surface antigen (HBsAg), HBeAg, anti‑HBe antibody (HBeAb) and hepatitis B core antibody (HBcAb) and HBV‑DNA. Notably, it was demonstrated that miR‑210 expression was not affected by treatment with HBV‑associated antigens in different types of macrophages. Notably, the serum of patients with CHB was able to markedly downregulate the miR‑210 expression of PBMs in healthy controls. These findings suggested that, unlike the induction of miR‑155 by HBeAg, there may be certain other elements, apart from HBV‑associated antigens, regulating miR‑210 levels in the serum and PBMs of patients with CHB that affect macrophage activation.
Seitz J, Kubicki M, Jacobs EG, Cherkerzian S, Weiss BK, Papadimitriou G, Mouradian P, Buka S, Goldstein JM, Makris N. Impact of sex and reproductive status on memory circuitry structure and function in early midlife using structural covariance analysis. Hum Brain Mapp. 2019;40 (4) :1221-1233.Abstract
Research on age-related memory alterations traditionally targets individuals aged ≥65 years. However, recent studies emphasize the importance of early aging processes. We therefore aimed to characterize variation in brain gray matter structure in early midlife as a function of sex and menopausal status. Subjects included 94 women (33 premenopausal, 29 perimenopausal, and 32 postmenopausal) and 99 demographically comparable men from the New England Family Study. Subjects were scanned with a high-resolution T1 sequence on a 3 T whole body scanner. Sex and reproductive-dependent structural differences were evaluated using Box's M test and analysis of covariances (ANCOVAs) for gray matter volumes. Brain regions of interest included dorsolateral prefrontal cortex (DLPFC), inferior parietal lobule (iPAR), anterior cingulate cortex (ACC), hippocampus (HIPP), and parahippocampus. While we observed expected significant sex differences in volume of hippocampus with women of all groups having higher volumes than men relative to cerebrum size, we also found significant differences in the covariance matrices of perimenopausal women compared with postmenopausal women. Associations between ACC and HIPP/iPAR/DLPFC were higher in postmenopausal women and correlated with better memory performance. Findings in this study underscore the importance of sex and reproductive status in early midlife for understanding memory function with aging.
Dalamagkas K, Tsintou M, Rathi Y, O'Donnell LJ, Pasternak O, Gong X, Zhu A, Savadjiev P, Papadimitriou GM, Kubicki M, et al. Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography. Brain Imaging Behav. 2019.Abstract
The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.
Sclocco R, Garcia RG, Kettner NW, Isenburg K, Fisher HP, Hubbard CS, Ay I, Polimeni JR, Goldstein J, Makris N, et al. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 2019.Abstract
BACKGROUND: Brainstem-focused mechanisms supporting transcutaneous auricular VNS (taVNS) effects are not well understood, particularly in humans. We employed ultrahigh field (7T) fMRI and evaluated the influence of respiratory phase for optimal targeting, applying our respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) technique. HYPOTHESIS: We proposed that targeting of nucleus tractus solitarii (NTS) and cardiovagal modulation in response to taVNS stimuli would be enhanced when stimulation is delivered during a more receptive state, i.e. exhalation. METHODS: Brainstem fMRI response to auricular taVNS (cymba conchae) was assessed for stimulation delivered during exhalation (eRAVANS) or inhalation (iRAVANS), while exhalation-gated stimulation over the greater auricular nerve (GANctrl, i.e. earlobe) was included as control. Furthermore, we evaluated cardiovagal response to stimulation by calculating instantaneous HF-HRV from cardiac data recorded during fMRI. RESULTS: Our findings demonstrated that eRAVANS evoked fMRI signal increase in ipsilateral pontomedullary junction in a cluster including purported NTS. Brainstem response to GANctrl localized a partially-overlapping cluster, more ventrolateral, consistent with spinal trigeminal nucleus. A region-of-interest analysis also found eRAVANS activation in monoaminergic source nuclei including locus coeruleus (LC, noradrenergic) and both dorsal and median raphe (serotonergic) nuclei. Response to eRAVANS was significantly greater than iRAVANS for all nuclei, and greater than GANctrl in LC and raphe nuclei. Furthermore, eRAVANS, but not iRAVANS, enhanced cardiovagal modulation, confirming enhanced eRAVANS response on both central and peripheral neurophysiological levels. CONCLUSION: 7T fMRI localized brainstem response to taVNS, linked such response with autonomic outflow, and demonstrated that taVNS applied during exhalation enhanced NTS targeting.
Kubicki M, Baxi M, Pasternak O, Tang Y, Karmacharya S, Chunga N, Lyall AE, Rathi Y, Eckbo R, Bouix S, et al. Lifespan Trajectories of White Matter Changes in Rhesus Monkeys. Cereb Cortex. 2019;29 (4) :1584-1593.Abstract
Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field. Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.
Alosco ML, Tripodis Y, Rowland B, Chua AS, Liao HJ, Martin B, Jarnagin J, Chaisson CE, Pasternak O, Karmacharya S, et al. A magnetic resonance spectroscopy investigation in symptomatic former NFL players. Brain Imaging Behav. 2019.Abstract
The long-term neurologic consequences of exposure to repetitive head impacts (RHI) are not well understood. This study used magnetic resonance spectroscopy (MRS) to examine later-life neurochemistry and its association with RHI and clinical function in former National Football League (NFL) players. The sample included 77 symptomatic former NFL players and 23 asymptomatic individuals without a head trauma history. Participants completed cognitive, behavior, and mood measures. N-acetyl aspartate, glutamate/glutamine, choline, myo-inositol, creatine, and glutathione were measured in the posterior (PCG) and anterior (ACG) cingulate gyrus, and parietal white matter (PWM). A cumulative head impact index (CHII) estimated RHI. In former NFL players, a higher CHII correlated with lower PWM creatine (r = -0.23, p = 0.02). Multivariate mixed-effect models examined neurochemical differences between the former NFL players and asymptomatic individuals without a history of head trauma. PWM N-acetyl aspartate was lower among the former NFL players (mean diff. = 1.02, p = 0.03). Between-group analyses are preliminary as groups were recruited based on symptomatic status. The ACG was the only region associated with clinical function, including positive correlations between glutamate (r = 0.32, p = 0.004), glutathione (r = 0.29, p = 0.02), and myo-inositol (r = 0.26, p = 0.01) with behavioral/mood symptoms. Other positive correlations between ACG neurochemistry and clinical function emerged (i.e., behavioral/mood symptoms, cognition), but the positive directionality was unexpected. All analyses controlled for age, body mass index, and education (for analyses examining clinical function). In this sample of symptomatic former NFL players, there was a direct effect between RHI and reduced cellular energy metabolism (i.e., lower creatine). MRS neurochemicals associated with neuroinflammation also correlated with behavioral/mood symptoms.
Follin C, Svärd D, van Westen D, Björkman-Burtscher IM, Sundgren PC, Fjalldal S, Lätt J, Nilsson M, Johanson A, Erfurth EM. Microstructural white matter alterations associated to neurocognitive deficits in childhood leukemia survivors treated with cranial radiotherapy - a diffusional kurtosis study. Acta Oncol. 2019 :1-8.Abstract
BACKGROUND: Cranial radiotherapy (CRT) is a known risk factor for neurocognitive impairment in survivors of childhood acute lymphoblastic leukemia (ALL). Diffusion tensor imaging (DTI) and diffusional kurtosis imaging (DKI) are MRI techniques that quantify microstructural changes in brain white matter (WM) and DKI is regarded as the more sensitive of them. Our aim was to more thoroughly understand the nature of cognitive deficits after cranial radiotherapy (CRT) in adulthood after childhood ALL. MATERIAL AND METHODS: Thirty-eight (21 women) ALL survivors, median age 38 (27-46) years, were investigated at median 34 years after diagnosis. All had been treated with a CRT dose of 24 Gy and with 11 years of complete hormone supplementation. DTI and DKI parameters were determined and neurocognitive tests were performed in ALL survivors and 29 matched controls. RESULTS: ALL survivors scored lower than controls in neurocognitive tests of vocabulary, memory, learning capacity, spatial ability, executive functions, and attention (p < .001). The survivors had altered DTI parameters in the fornix, uncinate fasciculus, and ventral cingulum (all p < .05) and altered DKI parameters in the fornix, uncinate fasciculus, and dorsal and ventral cingulum (p < .05). Altered DTI parameters in the fornix were associated with impaired episodic verbal memory (r = -0.40, p < .04). The left and right uncinate fasciculus (r = 0.6, p < .001), (r = -0.5, p < .02) as well as the right ventral cingulum (r = 0.5, p < .007) were associated with impaired episodic visual memory. Altered DKI parameters in the fornix, right uncinate fasciculus (r = 0.3, r = 0.05, p = .02), and ventral cingulum (r = 0.3, p = .02) were associated with impaired results of episodic visual memory. CONCLUSION: ALL survivors with cognitive deficits demonstrated microstructural damage in several WM tracts that were more extensive with DKI as compared to DTI; this might be a marker of radiation and chemotherapy neurotoxicity underlying cognitive dysfunction.
Brusini L, Menegaz G, Nilsson M. Monte Carlo simulations of water exchange through myelin wraps: Implications for diffusion MRI. IEEE Trans Med Imaging. 2019.Abstract
Diffusion MRI yields parameters sensitive to brain tissue microstructure. A structurally important aspect of this microstructure is the myelin wrapping around the axons. This study investigated the forward problem concerning whether water exchange via the spiraling structure of the myelin can meaningfully contribute to the signal in dMRI. Monte Carlo simulations were performed of a system with intra-axonal, myelin and extra-axonal compartments. Diffusion in the myelin was simulated as a spiral wrapping the axon, with a custom number of wraps. Exchange (or intra-axonal residence) times, were analyzed for various number of wraps and axon diameters. Pulsed gradient sequences were employed to simulate the dMRI signal, which was analyzed using different methods. Diffusional kurtosis imaging analysis yielded the radial diffusivity (RD) and radial kurtosis (RK), while the two-compartment Kärger model yielded estimates of the intra-axonal volume fraction (νic) and exchange time (τ). Results showed that τ was on the sub-second level for geometries with axon diameters below 1.0 μm and less than eight wraps. Otherwise, exchange was negligible compared to typical experimental durations, with τ of seconds or longer. In situations where exchange influenced the signal, estimates of RK and νic increased with the number of wraps, while RD decreased. τ estimates from simulated signals were in agreement with predicted ones. In conclusion, exchange through spiraling myelin permits sub-second τ for small diameters and low number of wraps. Such conditions may arise in the developing brain or in neurodegenerative disease, and thus the results could aid the interpretation of dMRI studies.
Di Biase MA, Zhang F, Lyall A, Kubicki M, Mandl RCW, Sommer IE, Pasternak O. Neuroimaging auditory verbal hallucinations in schizophrenia patient and healthy populations. Psychol Med. 2019 :1-10.Abstract
BACKGROUND: Auditory verbal hallucinations (AVH) are a cardinal feature of schizophrenia, but they can also appear in otherwise healthy individuals. Imaging studies implicate language networks in the generation of AVH; however, it remains unclear if alterations reflect biologic substrates of AVH, irrespective of diagnostic status, age, or illness-related factors. We applied multimodal imaging to identify AVH-specific pathology, evidenced by overlapping gray or white matter deficits between schizophrenia patients and healthy voice-hearers. METHODS: Diffusion-weighted and T1-weighted magnetic resonance images were acquired in 35 schizophrenia patients with AVH (SCZ-AVH), 32 healthy voice-hearers (H-AVH), and 40 age- and sex-matched controls without AVH. White matter fractional anisotropy (FA) and gray matter thickness (GMT) were computed for each region comprising ICBM-DTI and Desikan-Killiany atlases, respectively. Regions were tested for significant alterations affecting both SCZ-AVH and H-AVH groups, relative to controls. RESULTS: Compared with controls, the SCZ-AVH showed widespread FA and GMT reductions; but no significant differences emerged between H-AVH and control groups. While no overlapping pathology appeared in the overall study groups, younger (<40 years) H-AVH and SCZ-AVH subjects displayed overlapping FA deficits across four regions (p < 0.05): the genu and splenium of the corpus callosum, as well as the anterior limbs of the internal capsule. Analyzing these regions with free-water imaging ascribed overlapping FA abnormalities to tissue-specific anisotropy changes. CONCLUSIONS: We identified white matter pathology associated with the presence of AVH, independent of diagnostic status. However, commonalities were constrained to younger and more homogenous groups, after reducing pathologic variance associated with advancing age and chronicity effects.
Rahaghi FN, Winkler T, Kohli P, Nardelli P, Martí-Fuster B, Ross JC, Radhakrishnan R, Blackwater T, Ash SY, De La Bruere I, et al. Quantification of the Pulmonary Vascular Response to Inhaled Nitric Oxide Using Noncontrast Computed Tomography Imaging. Circ Cardiovasc Imaging. 2019;12 (1) :e008338.
Eklund A, Knutsson H, Nichols TE. Reply to Chen et al.: Parametric methods for cluster inference perform worse for two-sided t-tests. Hum Brain Mapp. 2019;40 (5) :1689-1691.Abstract
One-sided t-tests are commonly used in the neuroimaging field, but two-sided tests should be the default unless a researcher has a strong reason for using a one-sided test. Here we extend our previous work on cluster false positive rates, which used one-sided tests, to two-sided tests. Briefly, we found that parametric methods perform worse for two-sided t-tests, and that nonparametric methods perform equally well for one-sided and two-sided tests.
Lampinen B, Szczepankiewicz F, Novén M, van Westen D, Hansson O, Englund E, Mårtensson J, Westin C-F, Nilsson M. Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp. 2019;40 (8) :2529-45.Abstract
In vivo mapping of the neurite density with diffusion MRI (dMRI) is a high but challenging aim. First, it is unknown whether all neurites exhibit completely anisotropic ("stick-like") diffusion. Second, the "density" of tissue components may be confounded by non-diffusion properties such as T2 relaxation. Third, the domain of validity for the estimated parameters to serve as indices of neurite density is incompletely explored. We investigated these challenges by acquiring data with "b-tensor encoding" and multiple echo times in brain regions with low orientation coherence and in white matter lesions. Results showed that microscopic anisotropy from b-tensor data is associated with myelinated axons but not with dendrites. Furthermore, b-tensor data together with data acquired for multiple echo times showed that unbiased density estimates in white matter lesions require data-driven estimates of compartment-specific T2 values. Finally, the "stick" fractions of different biophysical models could generally not serve as neurite density indices across the healthy brain and white matter lesions, where outcomes of comparisons depended on the choice of constraints. In particular, constraining compartment-specific T2 values was ambiguous in the healthy brain and had a large impact on estimated values. In summary, estimating neurite density generally requires accounting for different diffusion and/or T2 properties between axons and dendrites. Constrained "index" parameters could be valid within limited domains that should be delineated by future studies.
Lee JK, Koppelmans V, Riascos RF, Hasan KM, Pasternak O, Mulavara AP, Bloomberg JJ, Seidler RD. Spaceflight-Associated Brain White Matter Microstructural Changes and Intracranial Fluid Redistribution. JAMA Neurol. 2019.Abstract
Importance: Spaceflight results in transient balance declines and brain morphologic changes; to our knowledge, the effect on brain white matter as measured by diffusion magnetic resonance imaging (dMRI), after correcting for extracellular fluid shifts, has not been examined. Objective: To map spaceflight-induced intracranial extracellular free water (FW) shifts and to evaluate changes in brain white matter diffusion measures in astronauts. Design, Setting and Participants: We performed retrospective, longitudinal analyses on dMRI data collected between 2010 and 2015. Of the 26 astronauts' dMRI scans released by the National Aeronautics and Space Administration Lifetime Surveillance of Astronaut Health, 15 had both preflight and postflight dMRI scans and were included in the final analyses. Data were analyzed between 2015 and 2018. Interventions or Exposures: Seven astronauts completed a space shuttle mission (≤30 days) and 8 completed a long-duration International Space Station mission (≤200 days). Main Outcomes and Measures: The dMRI scans were acquired for clinical monitoring; in this retrospective analysis, we analyzed brain FW and white matter diffusion metrics corrected for FW. We also obtained scores from computerized dynamic posturography tests of balance to assess brain-behavior associations. Results: Of the 15 astronauts included, the median (SD) age was 47.2 (1.5) years; 12 were men, and 3 were women. We found a significant, widespread increase in FW volume in the frontal, temporal, and occipital lobes from before spaceflight to after spaceflight. There was also a significant decrease in FW in the posterior aspect of the vertex. All FW changes were significant and ranged from approximately 2.5% to 4.0% across brain regions. We observed white matter changes in the right superior and inferior longitudinal fasciculi, the corticospinal tract, and cerebellar peduncles. All white matter changes were significant and ranged from approximately 0.75% to 1.25%. Spaceflight mission duration was associated with cerebellar white matter change, and white matter changes in the superior longitudinal fasciculus were associated with the balance changes seen in the astronauts from before spaceflight to after spaceflight. Conclusions and Relevance: Free water redistribution with spaceflight likely reflects headward fluid shifts occurring in microgravity as well as an upward shift of the brain within the skull. White matter changes were of a greater magnitude than those typically seen during the same period with healthy aging. Future, prospective assessments are required to better understand the recovery time and behavioral consequences of these brain changes.
Godino-Moya A, Royuela-Del-Val J, Usman M, Menchón-Lara R-M, Martín-Fernández M, Prieto C, Alberola-López C. Space-time variant weighted regularization in compressed sensing cardiac cine MRI. Magn Reson Imaging. 2019;58 :44-55.Abstract
PURPOSE: To analyze the impact on image quality and motion fidelity of a motion-weighted space-time variant regularization term in compressed sensing cardiac cine MRI. METHODS: k-t SPARSE-SENSE with temporal total variation (tTV) is used as the base reconstruction algorithm. Motion in the dynamic image is estimated by means of a robust registration technique for non-rigid motion. The resulting deformation fields are used to leverage the regularization term. The results are compared with standard k-t SPARSE-SENSE with tTV regularization as well as with an improved version of this algorithm that makes use of tTV and temporal Fast Fourier Transform regularization in x-f domain. RESULTS: The proposed method with space-time variant regularization provides higher motion fidelity and image quality than the two previously reported methods. Difference images between undersampled reconstruction and fully sampled reference images show less systematic errors with the proposed approach. CONCLUSIONS: Usage of a space-time variant regularization offers reconstructions with better image quality than the state of the art approaches used for comparison.
Zhang F, Wu Y, Norton I, Rathi Y, Golby AJ, O'Donnell LJ. Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Hum Brain Mapp. 2019.Abstract
There are two popular approaches for automated white matter parcellation using diffusion MRI tractography, including fiber clustering strategies that group white matter fibers according to their geometric trajectories and cortical-parcellation-based strategies that focus on the structural connectivity among different brain regions of interest. While multiple studies have assessed test-retest reproducibility of automated white matter parcellations using cortical-parcellation-based strategies, there are no existing studies of test-retest reproducibility of fiber clustering parcellation. In this work, we perform what we believe is the first study of fiber clustering white matter parcellation test-retest reproducibility. The assessment is performed on three test-retest diffusion MRI datasets including a total of 255 subjects across genders, a broad age range (5-82 years), health conditions (autism, Parkinson's disease and healthy subjects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is conducted for a fiber clustering method that leverages an anatomically curated fiber clustering white matter atlas, with comparison to a popular cortical-parcellation-based method. The two methods are compared for the two main white matter parcellation applications of dividing the entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying particular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test-retest reproducibility is measured using both geometric and diffusion features, including volumetric overlap (wDice) and relative difference of fractional anisotropy. Our experimental results in general indicate that the fiber clustering method produced more reproducible white matter parcellations than the cortical-parcellation-based method.
Cano M, Lee E, Cardoner N, Martínez-Zalacaín I, Pujol J, Makris N, Henry M, Via E, Hernández-Ribas R, Contreras-Rodríguez O, et al. Brain Volumetric Correlates of Right Unilateral Versus Bitemporal Electroconvulsive Therapy for Treatment-Resistant Depression. J Neuropsychiatry Clin Neurosci. 2019;31 (2) :152-158.Abstract
OBJECTIVE: The selection of a bitemporal (BT) or right unilateral (RUL) electrode placement affects the efficacy and side effects of ECT. Previous studies have not entirely described the neurobiological underpinnings of such differential effects. Recent neuroimaging research on gray matter volumes is contributing to our understanding of the mechanism of action of ECT and could clarify the differential mechanisms of BT and RUL ECT. METHODS: To assess the whole-brain gray matter volumetric changes observed after treating patients with treatment-resistant depression with BT or RUL ECT, the authors used MRI to assess 24 study subjects with treatment-resistant depression (bifrontotemporal ECT, N=12; RUL ECT, N=12) at two time points (before the first ECT session and after ECT completion). RESULTS: Study subjects receiving BT ECT showed gray matter volume increases in the bilateral limbic system, but subjects treated with RUL ECT showed gray matter volume increases limited to the right hemisphere. The authors observed significant differences between the two groups in midtemporal and subcortical limbic structures in the left hemisphere. CONCLUSIONS: These findings highlight that ECT-induced gray matter volume increases may be specifically observed in the stimulated hemispheres. The authors suggest that electrode placement may relevantly contribute to the development of personalized ECT protocols.
Anastasiadou C, Maltezos C, Galyfos G, Giannakakis S, Zannes N, Makris N, Sachsamanis G, Papacharalambous G. A carotid bifurcation pseudoaneurysm treated endovascularly in a patient with irradiated neck. Vasa. 2019;48 (2) :193-195.Abstract
A carotid artery pseudoaneurysm in an irradiated neck is a rare entity with possible devastating results and management should be multidisciplinary. We present a successful endovascular treatment of a late carotid artery pseudoaneurysm following patch endarterectomy and cervical radiotherapy.

Pages