Seitz J, Lyall AE, Kanayama G, Makris N, Hudson JI, Kubicki M, Pope HG, Kaufman MJ. White matter abnormalities in long-term anabolic-androgenic steroid users: A pilot study. Psychiatry Res. 2017;260 :1-5.Abstract
Recent studies of long-term anabolic-androgenic steroid (AAS) users reported amygdala structural and functional connectivity abnormalities. We assessed white matter microstructure in the inferior-fronto-occipital fasciculus (IFOF), a major associative bundle of the amygdala network. Diffusion weighted images acquired from 9 male long-term AAS users and 8 matched controls aged 36-51 years old were processed using a standardized pipeline (Tract-Based Spatial Statistics). Group differences were examined using linear regression with adjustment for age and current testosterone level. Compared to nonusers, AAS users exhibited significantly higher fractional anisotropy (FA) in the IFOF. Users showed markedly greater FA than nonusers on the left IFOF but only a modest, nonsignificant difference on the right IFOF. Moreover, FA was positively associated with lifetime cumulative AAS dose. Our results suggest that long-term AAS use alters IFOF white matter organization and integrity, which in turn might affect amygdala-related processes such as reward system function. Accordingly, further studies are needed to replicate findings in larger subject groups to determine the functional significance of the FA abnormality.
Seitz J, Sawyer KS, Papadimitriou G, Oscar-Berman M, Ng I, Kubicki A, Mouradian P, Ruiz SM, Kubicki M, Harris GJ, et al. Alcoholism and sexual dimorphism in the middle longitudinal fascicle: a pilot study. Brain Imaging Behav. 2017;11 (4) :1006-1017.Abstract
Alcoholism can lead to a complex mixture of cognitive and emotional deficits associated with abnormalities in fronto-cortico-striatal-limbic brain circuitries. Given the broad variety of neurobehavioral symptoms, one would also expect alterations of postrolandic neocortical systems. Thus, we used diffusion tensor imaging (DTI) to study the integrity of the middle longitudinal fascicle (MdLF), a major postrolandic association white matter tract that extends from the superior temporal gyrus to the parietal and occipital lobes, in individuals with a history of chronic alcohol abuse. DTI data were acquired on a 3 Tesla scanner in 30 abstinent alcoholics (AL; 9 men) and 25 nonalcoholic controls (NC; 8 men). The MdLF was determined using DTI-based tractography. Volume of the tract, fractional anisotropy (FA), radial (RD), and axial (AD) diffusivity, were compared between AL and NC, with sex and hemispheric laterality as independent variables. The association of DTI measures with neuropsychological performance was evaluated. Men showed bilateral reduction of MdLF volume and abnormal diffusion measurements of the left MdLF. Analyses also indicated that the left MdLF diffusion measurements in AL men were negatively associated with Verbal IQ and verbal fluency test scores. Abstinent alcoholic men display macrostructural abnormalities in the MdLF bilaterally, indicating an overall white matter deficit. Additionally, microstructural deficits of the left MdLF suggest more specific alterations associated with verbal skills in men.
Diaz AA, Young TP, Maselli DJ, Martinez CH, Maclean ES, Yen A, Dass C, Simpson SA, Lynch DA, Kinney GL, et al. Bronchoarterial ratio in never-smokers adults: Implications for bronchial dilation definition. Respirology. 2017;22 (1) :108-113.Abstract
BACKGROUND AND OBJECTIVE: Bronchiectasis manifests as recurrent respiratory infections and reduced lung function. Airway dilation, which is measured as the ratio of the diameters of the bronchial lumen (B) and adjacent pulmonary artery (A), is a defining radiological feature of bronchiectasis. A challenge to equating the bronchoarterial (BA) ratio to disease severity is that the diameters of airway and vessel in health are not established. We sought to explore the variability of BA ratio in never-smokers without pulmonary disease and its associations with lung function. METHODS: Objective measurements of the BA ratio on volumetric computed tomography (CT) scans and pulmonary function data were collected in 106 never-smokers. The BA ratio was measured in the right upper lobe apical bronchus (RB1) and the right lower lobe basal posterior bronchus. The association between the BA ratio and forced expiratory volume in 1 s (FEV1 ) was assessed using regression analysis. RESULTS: The BA ratio was 0.79 ± 0.16 and was smaller in more peripheral RB1 bronchi (P < 0.0001). The BA ratio was >1, a typical threshold for bronchiectasis, in 10 (8.5%) subjects. Subjects with a BA ratio >1 versus ≤1 had smaller artery diameters (P < 0.0001) but not significantly larger bronchial lumens. After adjusting for age, gender, race and height, the BA ratio was directly related to FEV1 (P = 0.0007). CONCLUSION: In never-smokers, the BA ratio varies by airway generation and is associated with lung function. A BA ratio >1 is driven by small arteries. Using artery diameter as reference to define bronchial dilation seems inappropriate.
Albi A, Pasternak O, Minati L, Marizzoni M, Bartrés-Faz D, Bargalló N, Bosch B, Rossini PM, Marra C, Müller B, et al. Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects. Hum Brain Mapp. 2017;38 (1) :12-26.Abstract
Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc.
Ning L, Setsompop K, Westin C-F, Rathi Y. New insights about time-varying diffusivity and its estimation from diffusion MRI. Magn Reson Med. 2017;78 (2) :763-774.Abstract
PURPOSE: Characterizing the relation between the applied gradient sequences and the measured diffusion MRI signal is important for estimating the time-dependent diffusivity, which provides important information about the microscopic tissue structure. THEORY AND METHODS: In this article, we extend the classical theory of Stepišnik for measuring time-dependent diffusivity under the Gaussian phase approximation. In particular, we derive three novel expressions which represent the diffusion MRI signal in terms of the mean-squared displacement, the instantaneous diffusivity, and the velocity autocorrelation function. We present the explicit signal expressions for the case of single diffusion encoding and oscillating gradient spin-echo sequences. Additionally, we also propose three different models to represent time-varying diffusivity and test them using Monte-Carlo simulations and in vivo human brain data. RESULTS: The time-varying diffusivities are able to distinguish the synthetic structures in the Monte-Carlo simulations. There is also strong statistical evidence about time-varying diffusivity from the in vivo human data set. CONCLUSION: The proposed theory provides new insights into our understanding of the time-varying diffusivity using different gradient sequences. The proposed models for representing time-varying diffusivity can be utilized to study time-varying diffusivity using in vivo human brain diffusion MRI data. Magn Reson Med 78:763-774, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Kikinis Z, Cho KIK, Coman IL, Radoeva PD, Bouix S, Tang Y, Eckbo R, Makris N, Kwon JS, Kubicki M, et al. Abnormalities in brain white matter in adolescents with 22q11.2 deletion syndrome and psychotic symptoms. Brain Imaging Behav. 2017;11 (5) :1353-1364.Abstract
BACKGROUND: 22q11.2 Deletion Syndrome (22q11DS) is considered to be a promising cohort to explore biomarkers of schizophrenia risk based on a 30 % probability of developing schizophrenia in adulthood. In this study, we investigated abnormalities in the microstructure of white matter in adolescents with 22q11DS and their specificity to prodromal symptoms of schizophrenia. METHODS: Diffusion Magnetic Resonance Imaging (dMRI) data were acquired from 50 subjects with 22q11DS (9 with and 41 without prodromal psychotic symptoms), and 47 matched healthy controls (mean age 18 +/-2 years). DMRI measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and compared between groups using the Tract Based Spatial Statistics (TBSS) method. Additionally, correlations between dMRI measures and scores on positive symptoms were performed. RESULTS: Reductions in MD, AD and RD (but not FA) were found in the corpus callosum (CC), left and right superior longitudinal fasciculus (SLF), and left and right corona radiata in the entire 22q11DS group. In addition, the 22q11DS subgroup with prodromal symptoms showed reductions in AD and MD, but no changes in RD when compared to the non-prodromal subgroup, in CC, right SLF, right corona radiata and right internal capsule. Finally, AD values in these tracts correlated with the scores on the psychosis subscale. CONCLUSION: Microstructural abnormalities in brain white matter are present in adolescent subjects with prodromal psychotic symptoms.
Makris N, Zhu A, Papadimitriou GM, Mouradian P, Ng I, Scaccianoce E, Baselli G, Baglio F, Shenton ME, Rathi Y, et al. Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces. Brain Imaging Behav. 2017;11 (5) :1258-1277.Abstract
Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer's disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.
Ning L, Özarslan E, Westin C-F, Rathi Y. Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion. Neuroimage. 2017;146 :452-473.Abstract
Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially-varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra-voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short- and long-range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time-varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra-axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte-Carlo simulations and in-vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons.
Halper-Stromberg E, Cho MH, Wilson C, Nevrekar D, Crapo JD, Washko G, San José Estépar R, Lynch DA, Silverman EK, Leach S, et al. Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc. 2017;14 (1) :33-40.Abstract
RATIONALE: Automated analysis of computed tomographic (CT) lung images for epidemiologic and genetic association studies is increasingly common, but little is known about the utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. OBJECTIVES: Assess the relative utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. METHODS: A standardized inspection protocol was used to visually assess chest CT images for 1,540 non-Hispanic white subjects within the COPDGene Study for the presence and severity of radiographic features representing airway wall thickness and emphysema. A genome-wide association study (GWAS) was performed, and two sets of candidate single-nucleotide polymorphisms with a higher prior likelihood of association were specified a priori for separate analysis. For each visual CT examination feature, a corresponding semiautomated CT feature(s) was identified for comparison in the same subjects. MEASUREMENTS AND MAIN RESULTS: GWAS for visual features of chest CT scans identified a genome-wide significant association with visual emphysema at the 15q25 locus (P = 6.3e(-9)). In the a priori-specified set of 19 previously identified GWAS loci, 7 and 8 loci were associated with airway measures or emphysema measures, respectively. In the a priori-specified candidate gene set, 13 of 196 candidate genes harbored a nearby single-nucleotide polymorphism significantly associated with an emphysema phenotype. Visual CT examination associations were robust to adjustment for semiautomated correlates in many cases. CONCLUSIONS: Standardized visual assessments of emphysema and airway disease are significantly associated with genetic loci previously associated with chronic obstructive pulmonary disease susceptibility or semiautomated CT examination phenotypes in GWAS. Visual CT measures of emphysema and airways disease offer independent information for genetic association studies in relation to standard semiautomated measures.
Royuela-Del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C. Jacobian weighted temporal total variation for motion compensated compressed sensing reconstruction of dynamic MRI. Magn Reson Med. 2017;77 (3) :1208-1215.Abstract
PURPOSE: To eliminate the need of spatial intraframe regularization in a recently reported dynamic MRI compressed-sensing-based reconstruction method with motion compensation and to increase its performance. THEORY AND METHODS: We propose a new regularization metric based on the introduction of a spatial weighting measure given by the Jacobian of the estimated deformations. It shows convenient discretization properties and, as a byproduct, it also provides a theoretical support to a result reported by others based on an intuitive design. The method has been applied to the reconstruction of both short and long axis views of the heart of four healthy volunteers. Quantitative image quality metrics as well as straightforward visual assessment are reported. RESULTS: Short and long axis reconstructions of cardiac cine MRI sequences have shown superior results than previously reported methods both in terms of quantitative metrics and of visual assessment. Fine details are better preserved due to the lack of additional intraframe regularization, with no significant image artifacts even for an acceleration factor of 12. CONCLUSIONS: The proposed Jacobian Weighted temporal Total Variation results in better reconstructions of highly undersampled cardiac cine MRI than previously proposed methods and sets a theoretical ground for forward and backward predictors used elsewhere. Magn Reson Med 77:1208-1215, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Lampinen B, Szczepankiewicz F, van Westen D, Englund E, Sundgren PC, Lätt J, Ståhlberg F, Nilsson M. Optimal experimental design for filter exchange imaging: Apparent exchange rate measurements in the healthy brain and in intracranial tumors. Magn Reson Med. 2017;77 (3) :1104-1114.Abstract
PURPOSE: Filter exchange imaging (FEXI) is sensitive to the rate of diffusional water exchange, which depends, eg, on the cell membrane permeability. The aim was to optimize and analyze the ability of FEXI to infer differences in the apparent exchange rate (AXR) in the brain between two populations. METHODS: A FEXI protocol was optimized for minimal measurement variance in the AXR. The AXR variance was investigated by test-retest acquisitions in six brain regions in 18 healthy volunteers. Preoperative FEXI data and postoperative microphotos were obtained in six meningiomas and five astrocytomas. RESULTS: Protocol optimization reduced the coefficient of variation of AXR by approximately 40%. Test-retest AXR values were heterogeneous across normal brain regions, from 0.3 ± 0.2 sin the corpus callosum to 1.8 ± 0.3 sin the frontal white matter. According to analysis of statistical power, in all brain regions except one, group differences of 0.3-0.5 sin the AXR can be inferred using 5 to 10 subjects per group. An AXR difference of this magnitude was observed between meningiomas (0.6 ± 0.1 s) and astrocytomas (1.0 ± 0.3 s). CONCLUSIONS: With the optimized protocol, FEXI has the ability to infer relevant differences in the AXR between two populations for small group sizes. Magn Reson Med 77:1104-1114, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Li Z, Lan L, Zeng F, Makris N, Hwang JW, Guo T, Wu F, Gao Y, Dong M, Liu M, et al. The altered right frontoparietal network functional connectivity in migraine and the modulation effect of treatment. Cephalalgia. 2017;37 (2) :161-176.Abstract
Aims This study aims to investigate the resting-state functional connectivity (rs-fc) of the right frontoparietal network (rFPN) between migraineurs and healthy controls (HCs) in order to determine how the rFPN rs-fc can be modulated by effective treatment. Methods One hundred patients and 46 matched HCs were recruited. Migraineurs were randomized to verum acupuncture, sham acupuncture, and waiting list groups. Resting-state functional magnetic resonance imaging data were collected before and after longitudinal treatments. Independent component analysis was applied in the data analysis. Results We found that migraineurs showed decreased rs-fc between the rFPN and bilateral precuneus compared with HCs. After treatments (real and sham), rFPN rs-fc with the precuneus was significantly reduced. This reduction was associated with headache intensity relief. In order to explore the role of the precuneus in acupuncture modulation, we performed a seed-based rs-fc analysis using the precuneus as a seed and found that the precuneus rs-fc with the bilateral rostral anterior cingulate cortex/medial prefrontal cortex, ventral striatum, and dorsolateral prefrontal cortex was significantly enhanced after treatment. Conclusion Our results suggest that migraineurs are associated with abnormal rFPN rs-fc. An effective treatment, such as acupuncture, may relieve symptoms by strengthening the cognitive adaptation/coping process. Elucidation of the adaptation/coping mechanisms may open up a new window for migraine management.
Kinsey MC, San José Estépar R, Van der Velden J, Cole BF, Christiani DC, Washko GR. Lower Pectoralis Muscle Area Is Associated with a Worse Overall Survival in Non-Small Cell Lung Cancer. Cancer Epidemiol Biomarkers Prev. 2017;26 (1) :38-43.Abstract
BACKGROUND: Muscle wasting is a component of the diagnosis of cancer cachexia and has been associated with poor prognosis. However, recommended tools to measure sarcopenia are limited by poor sensitivity or the need to perform additional scans. We hypothesized that pectoralis muscle area (PMA) measured objectively on chest CT scan may be associated with overall survival (OS) in non-small cell lung cancer (NSCLC). METHODS: We evaluated 252 cases from a prospectively enrolling lung cancer cohort. Eligible cases had CT scans performed prior to the initiation of surgery, radiation, or chemotherapy. PMA was measured in a semi-automated fashion while blinded to characteristics of the tumor, lung, and patient outcomes. RESULTS: Men had a significantly greater PMA than women (37.59 vs. 26.19 cm(2), P < 0.0001). In univariate analysis, PMA was associated with age and body mass index (BMI). A Cox proportional hazards model was constructed to account for confounders associated with survival. Lower pectoralis area (per cm(2)) at diagnosis was associated with an increased hazard of death of 2% (HRadj, 0.98; confidence interval, 0.96-0.99; P = 0.044) while adjusting for age, sex, smoking, chronic bronchitis, emphysema, histology, stage, chemotherapy, radiation, surgery, BMI, and ECOG performance status. CONCLUSIONS: Lower PMA measured from chest CT scans obtained at the time of diagnosis of NSCLC is associated with a worse OS. IMPACT: PMA may be a valuable CT biomarker for sarcopenia-associated lung cancer survival. Cancer Epidemiol Biomarkers Prev; 26(1); 38-43. ©2016 AACR SEE ALL THE ARTICLES IN THIS CEBP FOCUS SECTION, "THE OBESITY PARADOX IN CANCER EVIDENCE AND NEW DIRECTIONS".
Jacobs EG, Weiss B, Makris N, Whitfield-Gabrieli S, Buka SL, Klibanski A, Goldstein JM. Reorganization of Functional Networks in Verbal Working Memory Circuitry in Early Midlife: The Impact of Sex and Menopausal Status. Cereb Cortex. 2017;27 (5) :2857-2870.Abstract
Converging preclinical and human evidence indicates that the decline in ovarian estradiol production during the menopausal transition may play a mechanistic role in the neuronal changes that occur early in the aging process. Here, we present findings from a population-based fMRI study characterizing regional and network-level differences in working memory (WM) circuitry in midlife men and women (N = 142; age range 46-53), as a function of sex and reproductive stage. Reproductive histories and hormonal evaluations were used to determine menopausal status. Participants performed a verbal WM task during fMRI scanning. Results revealed robust differences in task-evoked responses in dorsolateral prefrontal cortex and hippocampus as a function of women's reproductive stage, despite minimal variance in chronological age. Sex differences in regional activity and functional connectivity that were pronounced between men and premenopausal women were diminished for postmenopausal women. Critically, analyzing data without regard to sex or reproductive status obscured group differences in the circuit-level neural strategies associated with successful working memory performance. These findings underscore the importance of reproductive age and hormonal status, over and above chronological age, for understanding sex differences in the aging of memory circuitry. Further, these findings suggest that early changes in working memory circuitry are evident decades before the age range typically targeted in cognitive aging studies.
Wells MJ, Estepar RSJ, McDonald M-LN, Bhatt SP, Diaz AA, Bailey WC, Jacobson FL, Dransfield MT, Washko GR, Make BJ, et al. Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD: a cohort study. BMC Pulm Med. 2016;16 (1) :169.Abstract
BACKGROUND: Hypoxemia is a major complication of COPD and is a strong predictor of mortality. We previously identified independent risk factors for the presence of resting hypoxemia in the COPDGene cohort. However, little is known about characteristics that predict onset of resting hypoxemia in patients who are normoxic at baseline. We hypothesized that a combination of clinical, physiologic, and radiographic characteristics would predict development of resting hypoxemia after 5-years of follow-up in participants with moderate to severe COPD METHODS: We analyzed 678 participants with moderate-to-severe COPD recruited into the COPDGene cohort who completed baseline and 5-year follow-up visits and who were normoxic by pulse oximetry at baseline. Development of resting hypoxemia was defined as an oxygen saturation ≤88% on ambient air at rest during follow-up. Demographic and clinical characteristics, lung function, and radiographic indices were analyzed with logistic regression models to identify predictors of the development of hypoxemia. RESULTS: Forty-six participants (7%) developed resting hypoxemia at follow-up. Enrollment at Denver (OR 8.30, 95%CI 3.05-22.6), lower baseline oxygen saturation (OR 0.70, 95%CI 0.58-0.85), self-reported heart failure (OR 6.92, 95%CI 1.56-30.6), pulmonary artery (PA) enlargement on computed tomography (OR 2.81, 95%CI 1.17-6.74), and prior severe COPD exacerbation (OR 3.31, 95%CI 1.38-7.90) were independently associated with development of resting hypoxemia. Participants who developed hypoxemia had greater decline in 6-min walk distance and greater 5-year decline in quality of life compared to those who remained normoxic at follow-up. CONCLUSIONS: Development of clinically significant hypoxemia over a 5-year span is associated with comorbid heart failure, PA enlargement and severe COPD exacerbation. Further studies are needed to determine if treatments targeting these factors can prevent new onset hypoxemia. TRIAL REGISTRATION: COPDGene is registered at NCT00608764 (Registration Date: January 28, 2008).
Pujol S, Cabeen R, Sébille SB, Yelnik J, François C, Fernandez Vidal S, Karachi C, Zhao Y, Cosgrove RG, Jannin P, et al. In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain Using Multi-Fiber Tractography. Front Neuroanat. 2016;10 :119.Abstract
The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson's disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson's disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.
Ferreira TM, Sood R, Bärenwald R, Carlström G, Topgaard D, Saalwächter K, Kinnunen PKJ, Ollila SOH. Acyl Chain Disorder and Azelaoyl Orientation in Lipid Membranes Containing Oxidized Lipids. Langmuir. 2016;32 (25) :6524-33.Abstract
Oxidized phospholipids occur naturally in conditions of oxidative stress and have been suggested to play an important role in a number of pathological conditions due to their effects on a lipid membrane acyl chain orientation, ordering, and permeability. Here we investigate the effect of the oxidized phospholipid 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) on a model membrane of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) using a combination of (13)C-(1)H dipolar-recoupling nuclear magnetic resonance (NMR) experiments and united-atom molecular dynamics (MD) simulations. The obtained experimental order parameter SCH profiles show that the presence of 30 mol % PazePC in the bilayer significantly increases the gauche content of the POPC acyl chains, therefore decreasing the thickness of the bilayer, although with no stable bilayer pore formation. The MD simulations reproduce the disordering effect and indicate that the orientation of the azelaoyl chain is highly dependent on its protonation state with acyl chain reversal for fully deprotonated states and a parallel orientation along the interfacial plane for fully protonated states, deprotonated and protonated azelaoyl chains having negative and positive SCH profiles, respectively. Only fully or nearly fully protonated azelaoyl chain are observed in the (13)C-(1)H dipolar-recoupling NMR experiments. The experiments show positive SCH values for the azelaoyl segments confirming for the first time that oxidized chains with polar termini adopt a parallel orientation to the bilayer plane as predicted in MD simulations.
Surova Y, Lampinen B, Nilsson M, Lätt J, Hall S, Widner H, van Westen D, Hansson O. Alterations of Diffusion Kurtosis and Neurite Density Measures in Deep Grey Matter and White Matter in Parkinson's Disease. PLoS One. 2016;11 (6) :e0157755.Abstract
In Parkinson's disease (PD), pathological microstructural changes occur and such changes might be detected using diffusion magnetic resonance imaging (dMRI). However, it is unclear whether dMRI improves PD diagnosis or helps differentiating between phenotypes, such as postural instability gait difficulty (PIGD) and tremor dominant (TD) PD. We included 105 patients with PD and 44 healthy controls (HC), all of whom underwent dMRI as part of the prospective Swedish BioFINDER study. Diffusion kurtosis imaging (DKI) and neurite density imaging (NDI) analyses were performed using regions of interest in the basal ganglia, the thalamus, the pons and the midbrain as well as tractography of selected white matter tracts. In the putamen, the PD group showed increased mean diffusivity (MD) (p = .003), decreased fractional anisotropy (FA) (p = .001) and decreased mean kurtosis (MK), compared to HC (p = .024). High MD and a low MK in the putamen were associated with more severe motor and cognitive symptomatology (p < .05). Also, patients with PIGD exhibited increased MD in the putamen compared to the TD patients (p = .009). In the thalamus, MD was increased (p = .001) and FA was decreased (p = .032) in PD compared to HC. Increased MD and decreased FA correlated negatively with motor speed and balance (p < .05). In the superior longitudinal fasciculus (SLF), MD (p = .019) and fiso were increased in PD compared to HC (p = .03). These changes correlated negatively with motor speed (p < .002) and balance (p < .037). However, most of the observed changes in PD were also present in cases with either multiple system atrophy (n = 11) or progressive supranuclear palsy (n = 10). In conclusion, PD patients exhibit microstructural changes in the putamen, the thalamus, and the SLF, which are associated with worse disease severity. However, the dMRI changes are not sufficiently specific to improve the diagnostic work-up of PD. Longitudinal studies should evaluate whether dMRI measures can be used to track disease progression.
Mareckova K, Holsen LM, Admon R, Makris N, Seidman L, Buka S, Whitfield-Gabrieli S, Goldstein JM. Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses. Hum Brain Mapp. 2016;37 (11) :3733-3744.Abstract
Negative affective stimuli elicit behavioral and neural responses which vary on a continuum from adaptive to maladaptive, yet are typically investigated in a dichotomous manner (healthy controls vs. psychiatric diagnoses). This practice may limit our ability to fully capture variance from acute responses to negative affective stimuli to psychopathology at the extreme end. To address this, we conducted a functional magnetic resonance imaging study to examine the neural responses to negative valence/high arousal and neutral valence/low arousal images as a function of dysphoric mood and sex across individuals (n = 99) who represented traditional categories of healthy controls, major depressive disorder, bipolar psychosis, and schizophrenia. Observation of negative (vs. neutral) stimuli elicited blood oxygen-level dependent responses in the following circuitry: periaqueductal gray, hypothalamus (HYPO), amygdala (AMYG), hippocampus (HIPP), orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), and greater connectivity between AMYG and mPFC. Across all subjects, severity of dysphoric mood was associated with hyperactivity of HYPO, and, among females, right (R) AMYG. Females also demonstrated inverse relationships between severity of dysphoric mood and connectivity between HYPO - R OFC, R AMYG - R OFC, and R AMYG - R HIPP. Overall, our findings demonstrated sex-dependent deficits in response to negative affective stimuli increasing as a function of dysphoric mood state. Females demonstrated greater inability to regulate arousal as mood became more dysphoric. These findings contribute to elucidating biosignatures associated with response to negative stimuli across disorders and suggest the importance of a sex-dependent lens in determining these biosignatures. Hum Brain Mapp 37:3733-3744, 2016. © 2016 Wiley Periodicals, Inc.
Eklund A, Nichols TE, Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113 (28) :7900-5.Abstract
The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.