Watanabe M, Kikinis R, Westin C-F. Level set-based integration of segmentation and computational fluid dynamics for flow correction in phase contrast angiography. Acad Radiol. 2003;10 (12) :1416-23.Abstract
RATIONALE AND OBJECTIVES: A novel method to correct flow data from magnetic resonance phase contrast (MR-PC) angiography, based on combining computational fluid dynamics and segmentation in a level set framework, was developed and tested in this study. MATERIALS AND METHODS: The MR-PC velocity data was used in a partial differential equation-based level set method for vessel segmentation. The results were supplied as the quantitative description of the vessel wall to the flow field solver using computational fluid dynamics, based on the level set method, to obtain a physically meaningful flow. The most significant characteristic of our novel approach is that it requires light computational loads, especially insofar as it avoids generation of complex computational grid system. The integration of segmentation and computational fluid dynamics in a level set framework is shown to be both robust and economic, and yet yields a physically correct velocity field and optimal vessel geometry. RESULTS: The application to the flow field in a straight tube with circular cross section of constant radius demonstrated the validity of out new approach, especially the treatment of the velocity boundary conditions on the solid wall. Simulation of the velocity field in both common carotid artery and bifurcation of basilar and vertebral arteries, based on clinical MR-PC data, provided with smooth and stable results. CONCLUSION: Applying this procedure to both synthetic and clinical data, significant improvement of the blood velocity field, such as a smooth velocity distribution aligned along the vessels and removal of burst or error vectors, could be observed. This procedure also offers possibilities for improved vessel segmentation.
Park H-J, Kubicki M, Shenton ME, Guimond A, McCarley RW, Maier SE, Kikinis R, Jolesz FA, Westin C-F. Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage. 2003;20 (4) :1995-2009.Abstract
Diffusion Tensor MRI (DT-MRI) can provide important in vivo information for the detection of brain abnormalities in diseases characterized by compromised neural connectivity. To quantify diffusion tensor abnormalities based on voxel-based statistical analysis, spatial normalization is required to minimize the anatomical variability between studied brain structures. In this article, we used a multiple input channel registration algorithm based on a demons algorithm and evaluated the spatial normalization of diffusion tensor image in terms of the input information used for registration. Registration was performed on 16 DT-MRI data sets using different combinations of the channels, including a channel of T2-weighted intensity, a channel of the fractional anisotropy, a channel of the difference of the first and second eigenvalues, two channels of the fractional anisotropy and the trace of tensor, three channels of the eigenvalues of the tensor, and the six channel tensor components. To evaluate the registration of tensor data, we defined two similarity measures, i.e., the endpoint divergence and the mean square error, which we applied to the fiber bundles of target images and registered images at the same seed points in white matter segmentation. We also evaluated the tensor registration by examining the voxel-by-voxel alignment of tensors in a sample of 15 normalized DT-MRIs. In all evaluations, nonlinear warping using six independent tensor components as input channels showed the best performance in effectively normalizing the tract morphology and tensor orientation. We also present a nonlinear method for creating a group diffusion tensor atlas using the average tensor field and the average deformation field, which we believe is a better approach than a strict linear one for representing both tensor distribution and morphological distribution of the population.
San José-Estépar R, Martín-Fernández M, Caballero-Martínez PP, Alberola-López C, Ruiz-Alzola J. A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data. Ultrasound Med Biol. 2003;29 (2) :255-69.Abstract
Several techniques have been described in the literature in recent years for the reconstruction of a regular volume out of a series of ultrasound (US) slices with arbitrary orientations, typically scanned by means of US freehand systems. However, a systematic approach to such a problem is still missing. This paper focuses on proposing a theoretical framework for the 3-D US volume reconstruction problem. We introduce a statistical method for the construction and trimming of the sampling grid where the reconstruction will be carried out. The results using in vivo US data demonstrate that the computed reconstruction grid that encloses the region-of-interest (ROI) is smaller than those obtained from other reconstruction methods in those cases where the scanning trajectory deviates from a pure straight line. In addition, an adaptive Gaussian interpolation technique is studied and compared with well-known interpolation methods that have been applied to the reconstruction problem in the past. We find that the proposed method numerically outperforms former proposals in several control studies; subjective visual results also support this conclusion and highlight some potential deficiencies of methods previously proposed.
Ozarslan E, Mareci TH. Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med. 2003;50 (5) :955-65.Abstract
A new method for mapping diffusivity profiles in tissue is presented. The Bloch-Torrey equation is modified to include a diffusion term with an arbitrary rank Cartesian tensor. This equation is solved to give the expression for the generalized Stejskal-Tanner formula quantifying diffusive attenuation in complicated geometries. This makes it possible to calculate the components of higher-rank tensors without using the computationally-difficult spherical harmonic transform. General theoretical relations between the diffusion tensor (DT) components measured by traditional (rank-2) DT imaging (DTI) and 3D distribution of diffusivities, as measured by high angular resolution diffusion imaging (HARDI) methods, are derived. Also, the spherical tensor components from HARDI are related to the rank-2 DT. The relationships between higher- and lower-rank Cartesian DTs are also presented. The inadequacy of the traditional rank-2 tensor model is demonstrated with simulations, and the method is applied to excised rat brain data collected in a spin-echo HARDI experiment.
McCartney SA, Greaves RRSH, Warner TD, O'Donnell LJD, Domizio P, Farthing MJG. Endothelin content, expression, and receptor type in normal and diseased human gallbladder. Dig Dis Sci. 2002;47 (8) :1786-92.Abstract
The aims of this study were to characterize the endothelin (ET) system in human gallbladder by determining (1) the tissue content of ET-1 and ET-2 by ELISA; (2) the expression of mRNA of the ET precursors preproendothelin-1, -2, and -3; and (3) mRNA expression for the ETA and ETB receptors. Median content of ET-1/2 was significantly reduced in severely inflamed gallbladders compared to gallbladders with mild inflammation. There was an inverse correlation between content of ET-1/2 and inflammation score. mRNA for preproendothelin-2 was highly expressed in all samples, whereas mRNA for preproendothelin-1 was present in negligible quantities and mRNA for preproendothelin-3 was undetectable. mRNA for ETA receptors was expressed in all samples analyzed, whereas mRNA for ETB receptors was expressed at a much lower level. This study demonstrates the presence of ET-1/2 in human gallbladder. ET-1/2 content is decreased with increasing degrees of histological inflammation. ET-2 is likely to be the physiologically significant endothelin isopeptide expressed and ETA receptors appear to predominate in the human gallbladder.
Goldstein JM, Seidman LJ, O'Brien LM, Horton NJ, Kennedy DN, Makris N, Caviness VS, Faraone SV, Tsuang MT. Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry. 2002;59 (2) :154-64.Abstract
BACKGROUND: Previous studies suggest that the impact of early insults predisposing to schizophrenia may have differential consequences by sex. We hypothesized that brain regions found to be structurally different in normal men and women (sexual dimorphisms) and abnormal in schizophrenia would show significant sex differences in brain abnormalities, particularly in the cortex, in schizophrenia. METHODS: Forty outpatients diagnosed as having schizophrenia by DSM-III-R were systematically sampled to be comparable within sex with 48 normal comparison subjects on the basis of age, ethnicity, parental socioeconomic status, and handedness. A comprehensive assessment of the entire brain was based on T1-weighted 3-dimensional images acquired from a 1.5-T magnet. Multivariate general linear models for correlated data were used to test for sex-specific effects regarding 22 hypothesized cortical, subcortical, and cerebrospinal fluid brain volumes, adjusted for age and total cerebrum size. Sex x group interactions were also tested on asymmetries of the planum temporale, Heschl's gyrus, and superior temporal gyrus, additionally controlled for handedness. RESULTS: Normal patterns of sexual dimorphisms were disrupted in schizophrenia. Sex-specific effects were primarily evident in the cortex, particularly in the frontomedial cortex, basal forebrain, cingulate and paracingulate gyri, posterior supramarginal gyrus, and planum temporale. Normal asymmetry of the planum was also disrupted differentially in men and women with schizophrenia. There were no significant differential sex effects in subcortical gray matter regions or cerebrospinal fluid. CONCLUSION: Factors that produce normal sexual dimorphisms may be associated with modulating insults producing schizophrenia, particularly in the cortex.
Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, Toomey R, Kennedy D, Caviness VS, Tsuang MT. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry. 2002;59 (9) :839-49.Abstract
BACKGROUND: Clues to the causes of schizophrenia can be derived from studying first-degree relatives because they are genetically related to an ill family member. Abnormalities observed in nonpsychotic relatives are indicators of possible genetic vulnerability to illness, independent of psychosis. We tested 4 hypotheses: (1) that hippocampal volume is smaller in nonpsychotic relatives than in controls, particularly in the left hemisphere; (2) that hippocampi will be smaller in multiplex relatives as compared with simplex relatives, and both will be smaller than in controls; (3) that hippocampal volumes and verbal declarative memory function will be positively correlated; and (4) that hippocampi will be smaller in patients with schizophrenia than in their nonpsychotic relatives or in controls. METHODS: Subjects were 45 nonpsychotic adult first-degree relatives from families with either 2 people ("multiplex," n = 17) or 1 person ("simplex," n = 28) diagnosed with schizophrenia, 18 schizophrenic relatives, and 48 normal controls. Sixty contiguous 3-mm coronal, T1-weighted 3-dimensional magnetic resonance images of the brain were acquired on a 1.5-T magnet. Volumes of the total cerebrum and the hippocampus were measured. RESULTS: Compared with controls, relatives, particularly from multiplex families, had significantly smaller left hippocampi. Verbal memory and left hippocampal volumes were significantly and positively correlated. Within families, hippocampal volumes did not differ between schizophrenic patients and their nonpsychotic relatives. CONCLUSIONS: Results support the hypothesis that the vulnerability to schizophrenia includes smaller left hippocampi and verbal memory deficits. Findings suggest that smaller left hippocampi and verbal memory deficits are an expression of early neurodevelopmental compromise, reflecting the degree of genetic liability to schizophrenia.
Ruiz-Alzola J, Westin C-F, Warfield SK, Alberola C, Maier S, Kikinis R. Nonrigid registration of 3D tensor medical data. Med Image Anal. 2002;6 (2) :143-61.Abstract
New medical imaging modalities offering multi-valued data, such as phase contrast MRA and diffusion tensor MRI, require general representations for the development of automated algorithms. In this paper we propose a unified framework for the registration of medical volumetric multi-valued data using local matching. The paper extends the usual concept of similarity between two pieces of data to be matched, commonly used with scalar (intensity) data, to the general tensor case. Our approach to registration is based on a multiresolution scheme, where the deformation field estimated in a coarser level is propagated to provide an initial deformation in the next finer one. In each level, local matching of areas with a high degree of local structure and subsequent interpolation are performed. Consequently, we provide an algorithm to assess the amount of structure in generic multi-valued data by means of gradient and correlation computations. The interpolation step is carried out by means of the Kriging estimator, which provides a novel framework for the interpolation of sparse vector fields in medical applications. The feasibility of the approach is illustrated by results on synthetic and clinical data.
Westin C-F, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R. Processing and visualization for diffusion tensor MRI. Med Image Anal. 2002;6 (2) :93-108.Abstract
This paper presents processing and visualization techniques for Diffusion Tensor Magnetic Resonance Imaging (DT-MRI). In DT-MRI, each voxel is assigned a tensor that describes local water diffusion. The geometric nature of diffusion tensors enables us to quantitatively characterize the local structure in tissues such as bone, muscle, and white matter of the brain. This makes DT-MRI an interesting modality for image analysis. In this paper we present a novel analytical solution to the Stejskal-Tanner diffusion equation system whereby a dual tensor basis, derived from the diffusion sensitizing gradient configuration, eliminates the need to solve this equation for each voxel. We further describe decomposition of the diffusion tensor based on its symmetrical properties, which in turn describe the geometry of the diffusion ellipsoid. A simple anisotropy measure follows naturally from this analysis. We describe how the geometry or shape of the tensor can be visualized using a coloring scheme based on the derived shape measures. In addition, we demonstrate that human brain tensor data when filtered can effectively describe macrostructural diffusion, which is important in the assessment of fiber-tract organization. We also describe how white matter pathways can be monitored with the methods introduced in this paper. DT-MRI tractography is useful for demonstrating neural connectivity (in vivo) in healthy and diseased brain tissue.
Sengupta S, Cooney R, Baj M, Ni'Muircheartaigh R, O'Donnell LJD. Prokinetic effect of indoramin, an alpha-adrenergic antagonist, on human gall-bladder. Aliment Pharmacol Ther. 2002;16 (10) :1801-3.Abstract
BACKGROUND: The effects of alpha- and beta-adrenergic agents on gall-bladder motility remain undefined. AIM: To determine the effects of alpha- and beta-antagonists on gall-bladder motility in healthy humans. METHODS: In this single, blind, three-way crossover study, a slow-release formulation of propranolol 80 mg (beta-antagonist), indoramin 25 mg (post-synaptic alpha1-antagonist) and placebo were administered to 10 healthy volunteers on three separate days 8 h before the assessment of gall-bladder volumes by ultrasonography. Gall-bladder volumes were assessed in the fasting state and at 5-min intervals for 50 min after a standard proprietary enteral feed (Ensure 186 mL, Abbott). RESULTS: The fasting gall-bladder volumes of subjects who received placebo or indoramin were significantly different (mean +/- S.E.M.: 16.50 +/- 2.78 mL and 13.47 +/- 2.24 mL, respectively; P < 0.001, two-way analysis of variance). The fasting gall-bladder volume after the administration of propranolol was 17.49 +/- 2.37 mL and was not significantly different from placebo (16.50 +/- 2.78 mL). When the mean post-prandial gall-bladder volumes were compared, indoramin significantly enhanced post-prandial gall-bladder emptying compared to placebo (P < 0.001). There was no significant post-prandial volume difference between placebo and propranolol. CONCLUSIONS: Indoramin, an alpha-adrenergic antagonist, acts as a prokinetic agent, enhancing post-prandial gall-bladder emptying in healthy individuals.
DaSilva AFM, Becerra L, Makris N, Strassman AM, Gonzalez GR, Geatrakis N, Borsook D. Somatotopic activation in the human trigeminal pain pathway. J Neurosci. 2002;22 (18) :8183-92.Abstract
Functional magnetic resonance imaging was used to image pain-associated activity in three levels of the neuraxis: the medullary dorsal horn, thalamus, and primary somatosensory cortex. In nine subjects, noxious thermal stimuli (46 degrees C) were applied to the facial skin at sites within the three divisions of the trigeminal nerve (V1, V2, and V3) and also to the ipsilateral thumb. Anatomical and functional data were acquired to capture activation across the spinothalamocortical pathway in each individual. Significant activation was observed in the ipsilateral spinal trigeminal nucleus within the medulla and lower pons in response to at least one of the three facial stimuli in all applicable data sets. Activation from the three facial stimulation sites exhibited a somatotopic organization along the longitudinal (rostrocaudal) axis of the brain stem that was consistent with the classically described "onion skin" pattern of sensory deficits observed in patients after trigeminal tractotomy. In the thalamus, activation was observed in the contralateral side involving the ventroposteromedial and dorsomedial nuclei after stimulation of the face and in the ventroposterolateral and dorsomedial nuclei after stimulation of the thumb. Activation in the primary somatosensory cortex displayed a laminar sequence that resembled the trigeminal nucleus, with V2 more rostral, V1 caudal, and V3 medial, abutting the region of cortical activation observed for the thumb. These results represent the first simultaneous imaging of pain-associated activation at three levels of the neuraxis in individual subjects. This approach will be useful for exploring central correlates of plasticity in models of experimental and clinical pain.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33 (3) :341-55.Abstract
We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
Herbert MR, Harris GJ, Adrien KT, Ziegler DA, Makris N, Kennedy DN, Lange NT, Chabris CF, Bakardjiev A, Hodgson J, et al. Abnormal asymmetry in language association cortex in autism. Ann Neurol. 2002;52 (5) :588-96.Abstract
Autism is a neurodevelopmental disorder affecting cognitive, language, and social functioning. Although language and social communication abnormalities are characteristic, prior structural imaging studies have not examined language-related cortex in autistic and control subjects. Subjects included 16 boys with autism (aged 7-11 years), with nonverbal IQ greater than 80, and 15 age- and handedness-matched controls. Magnetic resonance brain images were segmented into gray and white matter; cerebral cortex was parcellated into 48 gyral-based divisions per hemisphere. Asymmetry was assessed a priori in language-related inferior lateral frontal and posterior superior temporal regions and assessed post hoc in all regions to determine specificity of asymmetry abnormalities. Boys with autism had significant asymmetry reversal in frontal language-related cortex: 27% larger on the right in autism and 17% larger on the left in controls. Only one additional region had significant asymmetry differences on post hoc analysis: posterior temporal fusiform gyrus (more left-sided in autism), whereas adjacent fusiform gyrus and temporooccipital inferior temporal gyrus both approached significance (more right-sided in autism). These inferior temporal regions are involved in visual face processing. In boys with autism, language and social/face processing-related regions displayed abnormal asymmetry. These structural abnormalities may relate to language and social disturbances observed in autism.
Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med. 2002;48 (4) :577-82.Abstract
Magnetic resonance (MR) diffusion tensor imaging (DTI) can resolve the white matter fiber orientation within a voxel provided that the fibers are strongly aligned. However, a given voxel may contain a distribution of fiber orientations due to, for example, intravoxel fiber crossing. The present study sought to test whether a geodesic, high b-value diffusion gradient sampling scheme could resolve multiple fiber orientations within a single voxel. In regions of fiber crossing the diffusion signal exhibited multiple local maxima/minima as a function of diffusion gradient orientation, indicating the presence of multiple intravoxel fiber orientations. The multimodality of the observed diffusion signal precluded the standard tensor reconstruction, so instead the diffusion signal was modeled as arising from a discrete mixture of Gaussian diffusion processes in slow exchange, and the underlying mixture of tensors was solved for using a gradient descent scheme. The multitensor reconstruction resolved multiple intravoxel fiber populations corresponding to known fiber anatomy. Ma
Nestor PG, O'Donnell BF, McCarley RW, Niznikiewicz M, Barnard J, Jen Shen Z, Bookstein FL, Shenton ME. A new statistical method for testing hypotheses of neuropsychological/MRI relationships in schizophrenia: partial least squares analysis. Schizophr Res. 2002;53 (1-2) :57-66.Abstract
We applied partial least squares (PLS) as a novel multivariate statistical technique to examine neuropsychological correlates of magnetic resonance imaging (MRI) measures of brain volumes in a well studied sample of 15 male patients with chronic schizophrenia. In the current study, because the total number of measures far surpassed the total number of subjects, extant multivariate techniques such as canonical correlation could not be used to examine relationships among simultaneous measures of MRI and neuropsychology. Moreover, because MRI measures were expected to be highly inter-correlated, as would be neuropsychological test scores, extant multivariate statistical techniques would be substantially limited because they typically assume statistical independence among sets of measures. PLS, on the other hand, proved to be especially well suited to examining the relationships among function and anatomy measures in this sample, where statistically significant relationships were demonstrated that were entirely consistent with prior studies using univariate correlation techniques. In particular, statistically significant relationships emerged among sets of MRI temporal lobe measures and neuropsychological tests of verbal memory and categorization as well as among MRI frontal measures and neuropsychological tests of working memory.
Mariette F, Topgaard D, Jönsson B, Soderman O. 1H NMR diffusometry study of water in casein dispersions and gels. J Agric Food Chem. 2002;50 (15) :4295-302.Abstract
The self-diffusion coefficients of water in casein solutions and gels were measured using a pulsed-gradient spin-echo nuclear magnetic resonance technique (PGSE NMR). The dependence of the self-diffusion coefficient of water on the concentration and structure of casein is reported. The results were analyzed using a cell model. It was found that the water self-diffusion coefficient is insensitive to the structure of the casein in solution or in a gelled state. The influence of casein concentration on the water self-diffusion coefficient could be explained by obstruction from the casein molecule. Assuming a simple model with two water regions, each characterized by a specific water concentration and value of the water diffusion coefficient, the water mobility reduction induced by the casein can be rationalized.
McCarley RW, Salisbury DF, Hirayasu Y, Yurgelun-Todd DA, Tohen M, Zarate C, Kikinis R, Jolesz FA, Shenton ME. Association between smaller left posterior superior temporal gyrus volume on magnetic resonance imaging and smaller left temporal P300 amplitude in first-episode schizophrenia. Arch Gen Psychiatry. 2002;59 (4) :321-31.Abstract
BACKGROUND: In chronic schizophrenia, the P300 is broadly reduced and shows a localized left temporal deficit specifically associated with reduced gray matter volume of the left posterior superior temporal gyrus (STG). In first-episode patients, a similar left temporal P300 deficit is present in schizophrenia, but not in affective psychosis. The present study investigated whether the left temporal P300-left posterior STG volume association is selectively present in first-episode schizophrenia. METHOD: P300 was recorded as first-episode subjects with schizophrenia (n = 15) or affective psychosis (n = 18) or control subjects (n = 18) silently counted infrequent target tones amid standard tones. High-resolution spoiled gradient-recalled acquisition magnetic resonance images provided quantitative measures of temporal lobe gray matter regions of interest. RESULTS: Patients with first-episode schizophrenia displayed a reversed P300 temporal area asymmetry (smaller on the left), while magnetic resonance imaging showed smaller gray matter volumes of left posterior STG relative to control subjects and patients with affective psychosis (15.4% and 11.0%, respectively), smaller gray matter volumes of left planum temporale (21.0% relative to both), and a smaller total Heschl's gyrus volume (14.6% and 21.1%, respectively). Left posterior STG and the left planum temporale, but not other regions of interest, were specifically and positively correlated (r>0.5) with left temporal P300 voltage in patients with schizophrenia but not in patients with affective psychosis or in control subjects. CONCLUSION: These results suggest that the left temporal P300 abnormality specifically associated with left posterior STG gray matter volume reduction is present at the first hospitalization for schizophrenia but is not present at the first hospitalization for affective psychosis.
Dickey CC, McCarley RW, Shenton ME. The brain in schizotypal personality disorder: a review of structural MRI and CT findings. Harv Rev Psychiatry. 2002;10 (1) :1-15.Abstract
Studies of schizotypal personality disorder (SPD) are important because the condition is genetically related to schizophrenia and because data accumulating to confirm its biological underpinnings are challenging some traditional views about the nature of per-sonality disorders. This review of 17 structural imaging studies in SPD indicates that individuals with this disorder show brain abnormalities in the superior temporal gyrus, parahippocampus, temporal horn region of the lateral ventricles, corpus callosum, thalamus, and septum pellucidum, as well as in total cerebrospinal fluid volume, similar to those seen in persons with schizophrenia. Differences between SPD and schizophrenia include lack of abnormalities in the medial temporal lobes and lateral ventricles in SPD. Whether the normal volume, and possibly normal functioning, of the medial temporal lobes in individuals with SPD may help to suppress psychosis in this disorder remains an intriguing but still unresolved question. Such speculation must be tempered due to a paucity of studies, and additional work is needed to confirm these preliminary findings. The imaging findings do suggest, however, that SPD probably represents a milder form of disease along the schizophrenia continuum. With further clarification of the neuroanatomy of SPD, researchers may be able to identify which neuroanatomical abnormalities are associated with the frank psychosis seen in schizophrenia.
Friman O, Borga M, Lundberg P, Knutsson H. Detection of neural activity in fMRI using maximum correlation modeling. Neuroimage. 2002;15 (2) :386-95.Abstract
A technique for detecting neural activity in functional MRI data is introduced. It is based on a novel framework termed maximum correlation modeling. The method employs a spatial filtering approach that adapts to the local activity patterns, which results in an improved detection sensitivity combined with good specificity. A spatially varying hemodynamic response is simultaneously modelled by a sum of two gamma functions. Comparisons to traditional analysis methods are made using both synthetic and real data. The results indicate that the maximum correlation modeling approach is a strong alternative for analyzing fMRI data.
Friman O, Borga M, Lundberg P, Knutsson H. Exploratory fMRI analysis by autocorrelation maximization. Neuroimage. 2002;16 (2) :454-64.Abstract
A novel and computationally efficient method for exploratory analysis of functional MRI data is presented. The basic idea is to reveal underlying components in the fMRI data that have maximum autocorrelation. The tool for accomplishing this task is Canonical Correlation Analysis. The relation to Principal Component Analysis and Independent Component Analysis is discussed and the performance of the methods is compared using both simulated and real data.